服务热线
0532-87819132
2023-07-13
掌静脉识别技术落地应用
掌静脉识别技术应用范围广泛,不仅可以应用于安防门禁、轨道交通、金融支付,也可应用于企业管理、智能楼宇、智慧社区、智慧园区、智慧城市、景区票务、医疗服务身份认证、公安司法、军工保密等多个领域。
掌静脉识别技术包括注册过程、识别过程。
掌静脉注册阶段,首先对掌静脉图像采集,通过近红外成像方式获取手掌皮肤下3mm以内的血管纹理分布信息,对获得的静脉图像进行图像校正、增强处理,随后通过传统的特征提取算法或者深度神经网络的方法,提取静脉的方向、曲率、宽度、距离等信息构成特征向量作为原始模版,将其存储在静脉数据库或者硬件存储中。
在进行掌静脉识别过程时,通过掌静脉识别设备对掌静脉图像进行实时采集,获取手掌静脉图像,采用与训练阶段相同的图像处理方法和特征提取方法得到静脉特征,计算提取到的特征与预先保存在特征库中的已注册特征进行对比匹配,最后根据相似度确定用户的身份。
传统的手掌静脉图像识别算法的关键方法主要有:① 基于静脉图谱的模板匹配算法。此类算法是在原始图像上提取出静脉线形信息,进行二值化,得到模板特征,采用模板卷积匹配的方法进行相似度计算。② 基于子空间的图像分类算法。选择一定数量的静脉图像样本,分别对其进行静脉增强和降维处理,随后训练一个分类器模型,使用训练好的模型便可对原始图像进行分类识别。③ 基于特征点提取的特征匹配方法。从原始图像中提取出具有特异性的关键点,如静脉的端点、分叉点、角点等,典型的算法包括SIFT特征、SURF特征、Minutiae特征等。④局部编码的静脉中心线匹配方法,对线形的静脉特征进行分段编码,匹配过程中对分段信息进行匹配,不同分段之间不需要保持绝对相同的位置偏移,提高了对图像旋转和变形的适应性。⑤ 基于深度框架的自学习特征方法,对多层网络参数适配,建立输入、输出节点之间的最佳非线性拟合网络,使经过深层网络映射的物体样本与样本标记之间关系尽量逼近真实分布,从而获得最大概率分布。
基于深度学习的掌静脉识别技术是完成以图像分类为目标的识别技术,通过对海量掌静脉数据的学习,将手部图像作为输入到深度卷积神经网络中对ROI进行自适应分类和定位,计算用于分类和回归的各种概率边界框,实现ROI对手掌静脉图像的高精度分割。随后使用ROI分割的张静脉图像训练了深度编码器-解码器网络。该网络由一个特征提取器( Feature Extractor, FE)组成,对掌静脉图像进行特征编码,训练出具有泛化能力和分辨能力的更有利于匹配的图像特征。训练过程中,还需要对输入数据和中间层的数据进行归一化操作,保证网络在反向传播中采用随机梯度下降(SGD),经过对多层网络参数的调整,最终建立起输入、输出节点之间的最佳非线性拟合网络,通过深度学习选择最具区分性的特征,扩大类外间距,缩小类内距离,形成具有高精度、高准确、快速、实时、鲁棒的深度学习掌静脉识别系统。